Incorporating breeding and genetics as part of enhancing, harmonizing and applying models

- Why is this action item important/ why should it be addressed?
 - Genetics and plant breeding are technological ways of adapting to climate change
 - Cultivars will be developed with tolerance to high temp, drought, salinity, diseases, insects, etc., and we need models that can include these technologies.
 - Modeling has been underused due to data access, perceptions of inaccuracy... that have recently been less severe.
 - Progress in breeding is less than desired. Models can assist with complex responses of G to E x M.
 - De-complex G x E x M
 - To use models more effectively for projecting climate change impacts
 - Models are one of many efficient tools to harmonize complex data to derive some actionable item/ decision. How else one could harmonize such issues, so I consider use of models as one of the tools.
 - Genetics are rapidly advancing and new possibilities for adaptation will likely result.
 - Breeding gains could be further maximized with these efforts.
 - Increase fundamental understanding of crop physiology.
 - Availability of genetic, weather and soil data has greatly improved, making it more realistic/practical to employ models in breeding.
 - May be able to help with abiotic stress tolerance
 - Increase efficiency of testing
 - Accurately constructing artificial selection environment for abiotic stress tolerance.
 - Increase gain from selection
 - Large gap between agronomic models and phenotype and genotype models.
 - Population increase
 - Feed the 10 billion with less natural resource extraction
 - Complex issue, needs lots of input from various experts.
 - Not currently being done, but could be effective.
 - Improve our image – Borlaug with Google Glasses – Plant breeding is cool.
 - Stakeholders have issued for more involvement from breeders
 - Need to engage private sector breeders in this effort.
 - Modeling climate change effects to target traits
 - Modeling changes of genetic effects on other organisms in system

- What needs to be addressed within this action item?
 - Get the agronomist involved in to make more understanding between crop modeling and genetic scientist.
 - Develop collaborative projects between breeders and modelers.
 - Need to identify plant breeders and geneticists that would like to integrate their work into crop models.
 - Develop team of breeders and crop modelers to incorporate genes into models.
 - Identify one or ensemble of models to do item listed in question one. How this could be achieved? What geographical locations to consider based on a priority.
 - Efficient ways to collect, store, and analyze data.
 - How are models updated as more information is generated.
- Votes
 o Unknown subject 1 = 10 votes
 o Unknown subject 2 = 6 votes
- Data- Additional added sheet
 o Steps
 ▪ Identify case studies to start with
 ▪ Standardize data collection and description
 ▪ What type of population do you use
 ▪ Collect data on management
 o When
 ▪ Soon
 o Resources
 ▪ People- $$
 ▪ Time and talent
 ▪ Genotyping
 o Communication
 ▪ Enhance
 o Success
 ▪ Prediction of traits (quantitative) (low h2)
 ▪ Useful to breeder

- Collaboration – Additional added sheet
 o Needed for Progress?
 ▪ Teams for collaboration in Wheat and Maize
 ▪ Identify modelling and breeding scientists willing to collaborate
 ▪ Private sector – public partnerships (Identify pre-competitive space)
 o By When? How long?
 ▪ Sustainable funding- NSF
 ▪ Several years to breakdown silos
 o Resources
 ▪ Genetic resources
 ▪ Mapping populations
 ▪ I/U CRC
 ▪ Funding
 ▪ Access to public wheat data sets (T3)
 o What would success look like?
 ▪ Current progress in yield 0.7%/yr
 ▪ TPOC for collaboration 1.4%/yr
- Additional Sheet
 o Genetics – 6 votes
 ▪ Need better understanding of genetic control of traits used in models
 ▪ Reduce error in yield trials with environmental covariation
 ▪ Gene based information that can be “translated” physiological processes that can be modeled
 ▪ Accessibility of data and germplasm. Freedom to operate
- Need efficient data pipeline to link data from breeding work with models G, E, M, and P.
 - Money – 6 votes
 - Determine how to influence funding agencies to recognize value of collaboration efforts between modeling community, climate scientists and breeders/crop physiologists/agronomists.
 - Obtain financial resources for model improvement
 - Phenomics – 8 votes
 - Continuing education in spatial statistics relevant to TAIS topic
 - Need to identify what characteristics we should be looking for in future plants
 - Simplify selection
 - Commitment by breeders and agronomists to standard phonological descriptors
 - Need much better physiological data for lines. (Use phenotyping tools)
- Uncategorized Notes
 - Predictive recommendation for use of cultivars
 - Need models that are easily modified to consider traits of value for breeding
 - Some best practices for environment monitoring of trial sites
 - Improve data capture tools
 - Automate image/sensor data capture
 - Build predictive models for yield limiting factors
 - What information needs to be collected to develop models.